Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(7): e2314085121, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38330013

RESUMO

Cancer therapy, including immunotherapy, is inherently limited by chronic inflammation-induced tumorigenesis and toxicity within the tumor microenvironment. Thus, stimulating the resolution of inflammation may enhance immunotherapy and improve the toxicity of immune checkpoint inhibition (ICI). As epoxy-fatty acids (EpFAs) are degraded by the enzyme soluble epoxide hydrolase (sEH), the inhibition of sEH increases endogenous EpFA levels to promote the resolution of cancer-associated inflammation. Here, we demonstrate that systemic treatment with ICI induces sEH expression in multiple murine cancer models. Dietary omega-3 polyunsaturated fatty acid supplementation and pharmacologic sEH inhibition, both alone and in combination, significantly enhance anti-tumor activity of ICI in these models. Notably, pharmacological abrogation of the sEH pathway alone or in combination with ICI counter-regulates an ICI-induced pro-inflammatory and pro-tumorigenic cytokine storm. Thus, modulating endogenous EpFA levels through dietary supplementation or sEH inhibition may represent a unique strategy to enhance the anti-tumor activity of paradigm cancer therapies.


Assuntos
Epóxido Hidrolases , Neoplasias , Camundongos , Humanos , Animais , Epóxido Hidrolases/metabolismo , Ácidos Graxos/metabolismo , Inflamação/metabolismo , Neoplasias/terapia , Imunoterapia , Microambiente Tumoral
3.
Pharmacol Ther ; 227: 107879, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33915177

RESUMO

The resolution of inflammation has emerged as a critical endogenous process that protects host tissues from prolonged or excessive inflammation that can become chronic. Failure of the resolution of inflammation is a key pathological mechanism that drives the progression of numerous inflammation-driven diseases. Essential polyunsaturated fatty acid (PUFA)-derived autacoid mediators termed 'specialized pro-resolving mediators' (SPMs) regulate endogenous resolution programs by limiting further neutrophil tissue infiltration and stimulating local immune cell (e.g., macrophage)-mediated clearance of apoptotic polymorphonuclear neutrophils, cellular debris, and microbes, as well as counter-regulating eicosanoid/cytokine production. The SPM superfamily encompasses lipoxins, resolvins, protectins, and maresins. Our understanding of the resolution phase of acute inflammation has grown exponentially in the past three decades with the discovery of novel pro-resolving lipid mediators, their pro-efferocytosis mechanisms, and their receptors. Technological advancement has further facilitated lipid mediator metabolipidomic based profiling of healthy and diseased human tissues, highlighting the extraordinary therapeutic potential of SPMs across a broad array of inflammatory diseases including cancer. As current front-line cancer therapies such as surgery, chemotherapy, and radiation may induce various unwanted side effects such as robust pro-inflammatory and pro-tumorigenic host responses, characterizing SPMs and their receptors as novel therapeutic targets may have important implications as a new direction for host-targeted cancer therapy. Here, we discuss the origins of inflammation resolution, key discoveries and the failure of resolution mechanisms in diseases with an emphasis on cancer, and future directions focused on novel therapeutic applications for this exciting and rapidly expanding field.


Assuntos
Inflamação , Biologia , Humanos , Inflamação/tratamento farmacológico , Inflamação/patologia , Medicina
4.
Cancer Metastasis Rev ; 39(2): 337-340, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32385712

RESUMO

Severe coronavirus disease (COVID-19) is characterized by pulmonary hyper-inflammation and potentially life-threatening "cytokine storms". Controlling the local and systemic inflammatory response in COVID-19 may be as important as anti-viral therapies. Endogenous lipid autacoid mediators, referred to as eicosanoids, play a critical role in the induction of inflammation and pro-inflammatory cytokine production. SARS-CoV-2 may trigger a cell death ("debris")-induced "eicosanoid storm", including prostaglandins and leukotrienes, which in turn initiates a robust inflammatory response. A paradigm shift is emerging in our understanding of the resolution of inflammation as an active biochemical process with the discovery of novel endogenous specialized pro-resolving lipid autacoid mediators (SPMs), such as resolvins. Resolvins and other SPMs stimulate macrophage-mediated clearance of debris and counter pro-inflammatory cytokine production, a process called inflammation resolution. SPMs and their lipid precursors exhibit anti-viral activity at nanogram doses in the setting of influenza without being immunosuppressive. SPMs also promote anti-viral B cell antibodies and lymphocyte activity, highlighting their potential use in the treatment of COVID-19. Soluble epoxide hydrolase (sEH) inhibitors stabilize arachidonic acid-derived epoxyeicosatrienoic acids (EETs), which also stimulate inflammation resolution by promoting the production of pro-resolution mediators, activating anti-inflammatory processes, and preventing the cytokine storm. Both resolvins and EETs also attenuate pathological thrombosis and promote clot removal, which is emerging as a key pathology of COVID-19 infection. Thus, both SPMs and sEH inhibitors may promote the resolution of inflammation in COVID-19, thereby reducing acute respiratory distress syndrome (ARDS) and other life-threatening complications associated with robust viral-induced inflammation. While most COVID-19 clinical trials focus on "anti-viral" and "anti-inflammatory" strategies, stimulating inflammation resolution is a novel host-centric therapeutic avenue. Importantly, SPMs and sEH inhibitors are currently in clinical trials for other inflammatory diseases and could be rapidly translated for the management of COVID-19 via debris clearance and inflammatory cytokine suppression. Here, we discuss using pro-resolution mediators as a potential complement to current anti-viral strategies for COVID-19.


Assuntos
Anti-Inflamatórios não Esteroides/uso terapêutico , Antivirais/uso terapêutico , Betacoronavirus/imunologia , Infecções por Coronavirus/tratamento farmacológico , Síndrome da Liberação de Citocina/tratamento farmacológico , Pneumonia Viral/tratamento farmacológico , Síndrome do Desconforto Respiratório/terapia , Anti-Inflamatórios não Esteroides/farmacologia , Betacoronavirus/isolamento & purificação , COVID-19 , Ensaios Clínicos como Assunto , Infecções por Coronavirus/complicações , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/virologia , Síndrome da Liberação de Citocina/imunologia , Citocinas/imunologia , Citocinas/metabolismo , Eicosanoides/imunologia , Eicosanoides/metabolismo , Epóxido Hidrolases/antagonistas & inibidores , Epóxido Hidrolases/metabolismo , Humanos , Macrófagos/imunologia , Macrófagos/metabolismo , Pandemias , Pneumonia Viral/complicações , Pneumonia Viral/imunologia , Pneumonia Viral/virologia , Alvéolos Pulmonares/imunologia , Alvéolos Pulmonares/metabolismo , Alvéolos Pulmonares/virologia , Síndrome do Desconforto Respiratório/imunologia , SARS-CoV-2
5.
J Clin Invest ; 129(7): 2964-2979, 2019 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-31205032

RESUMO

Cancer therapy is a double-edged sword, as surgery and chemotherapy can induce an inflammatory/immunosuppressive injury response that promotes dormancy escape and tumor recurrence. We hypothesized that these events could be altered by early blockade of the inflammatory cascade and/or by accelerating the resolution of inflammation. Preoperative, but not postoperative, administration of the nonsteroidal antiinflammatory drug ketorolac and/or resolvins, a family of specialized proresolving autacoid mediators, eliminated micrometastases in multiple tumor-resection models, resulting in long-term survival. Ketorolac unleashed anticancer T cell immunity that was augmented by immune checkpoint blockade, negated by adjuvant chemotherapy, and dependent on inhibition of the COX-1/thromboxane A2 (TXA2) pathway. Preoperative stimulation of inflammation resolution via resolvins (RvD2, RvD3, and RvD4) inhibited metastases and induced T cell responses. Ketorolac and resolvins exhibited synergistic antitumor activity and prevented surgery- or chemotherapy-induced dormancy escape. Thus, simultaneously blocking the ensuing proinflammatory response and activating endogenous resolution programs before surgery may eliminate micrometastases and reduce tumor recurrence.


Assuntos
Ácidos Docosa-Hexaenoicos/farmacologia , Imunidade Celular/efeitos dos fármacos , Cetorolaco/farmacologia , Recidiva Local de Neoplasia/prevenção & controle , Neoplasias Experimentais , Cuidados Pré-Operatórios , Linfócitos T/metabolismo , Animais , Masculino , Camundongos , Camundongos Knockout , Metástase Neoplásica , Recidiva Local de Neoplasia/metabolismo , Recidiva Local de Neoplasia/patologia , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Neoplasias Experimentais/terapia , Linfócitos T/patologia
6.
Proc Natl Acad Sci U S A ; 116(13): 6292-6297, 2019 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-30862734

RESUMO

Inflammation in the tumor microenvironment is a strong promoter of tumor growth. Substantial epidemiologic evidence suggests that aspirin, which suppresses inflammation, reduces the risk of cancer. The mechanism by which aspirin inhibits cancer has remained unclear, and toxicity has limited its clinical use. Aspirin not only blocks the biosynthesis of prostaglandins, but also stimulates the endogenous production of anti-inflammatory and proresolving mediators termed aspirin-triggered specialized proresolving mediators (AT-SPMs), such as aspirin-triggered resolvins (AT-RvDs) and lipoxins (AT-LXs). Using genetic and pharmacologic manipulation of a proresolving receptor, we demonstrate that AT-RvDs mediate the antitumor activity of aspirin. Moreover, treatment of mice with AT-RvDs (e.g., AT-RvD1 and AT-RvD3) or AT-LXA4 inhibited primary tumor growth by enhancing macrophage phagocytosis of tumor cell debris and counter-regulating macrophage-secreted proinflammatory cytokines, including migration inhibitory factor, plasminogen activator inhibitor-1, and C-C motif chemokine ligand 2/monocyte chemoattractant protein 1. Thus, the pro-resolution activity of AT-resolvins and AT-lipoxins may explain some of aspirin's broad anticancer activity. These AT-SPMs are active at considerably lower concentrations than aspirin, and thus may provide a nontoxic approach to harnessing aspirin's anticancer activity.


Assuntos
Antineoplásicos/farmacologia , Aspirina/farmacologia , Neoplasias/tratamento farmacológico , Neoplasias/prevenção & controle , Animais , Aspirina/administração & dosagem , Quimiocina CCL2/metabolismo , Quimiocinas/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças , Ácidos Docosa-Hexaenoicos/metabolismo , Eicosanoides/metabolismo , Ácidos Graxos Insaturados/metabolismo , Feminino , Inflamação/tratamento farmacológico , Lipoxinas/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Metabolômica , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Proteínas Associadas aos Microtúbulos/metabolismo , Metástase Neoplásica/tratamento farmacológico , Metástase Neoplásica/prevenção & controle , Proteínas do Tecido Nervoso/metabolismo , Fagocitose/efeitos dos fármacos , Inativadores de Plasminogênio/metabolismo , Prostaglandinas/metabolismo
7.
Cancer Metastasis Rev ; 37(2-3): 557-572, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30136088

RESUMO

Bioactive lipids are essential components of human cells and tissues. As discussed in this review, the cancer lipidome is diverse and malleable, with the ability to promote or inhibit cancer pathogenesis. Targeting lipids within the tumor and surrounding microenvironment may be a novel therapeutic approach for treating cancer patients. Additionally, the emergence of a novel super-family of lipid mediators termed specialized pro-resolving mediators (SPMs) has revealed a new role for bioactive lipid mediators in the resolution of inflammation in cancer biology. The role of SPMs in cancer holds great promise in our understanding of cancer pathogenesis and can ultimately be used in future cancer diagnostics and therapy.


Assuntos
Antineoplásicos/farmacologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Lipídeos , Terapia de Alvo Molecular , Neoplasias/etiologia , Neoplasias/metabolismo , Animais , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Humanos , Mediadores da Inflamação/metabolismo , Lipídeos/química , Neoplasias/diagnóstico , Neoplasias/tratamento farmacológico , Relação Estrutura-Atividade
8.
J Exp Med ; 215(1): 115-140, 2018 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-29191914

RESUMO

Cancer therapy reduces tumor burden by killing tumor cells, yet it simultaneously creates tumor cell debris that may stimulate inflammation and tumor growth. Thus, conventional cancer therapy is inherently a double-edged sword. In this study, we show that tumor cells killed by chemotherapy or targeted therapy ("tumor cell debris") stimulate primary tumor growth when coinjected with a subthreshold (nontumorigenic) inoculum of tumor cells by triggering macrophage proinflammatory cytokine release after phosphatidylserine exposure. Debris-stimulated tumors were inhibited by antiinflammatory and proresolving lipid autacoids, namely resolvin D1 (RvD1), RvD2, or RvE1. These mediators specifically inhibit debris-stimulated cancer progression by enhancing clearance of debris via macrophage phagocytosis in multiple tumor types. Resolvins counterregulate the release of cytokines/chemokines, including TNFα, IL-6, IL-8, CCL4, and CCL5, by human macrophages stimulated with cell debris. These results demonstrate that enhancing endogenous clearance of tumor cell debris is a new therapeutic target that may complement cytotoxic cancer therapies.


Assuntos
Antineoplásicos/farmacologia , Ácidos Docosa-Hexaenoicos/farmacologia , Animais , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Proliferação de Células , Citocinas/metabolismo , Modelos Animais de Doenças , Humanos , Mediadores da Inflamação/metabolismo , Macrófagos/metabolismo , Melanoma Experimental , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Neoplasias/patologia , Fagocitose , Fosfatidilserinas/metabolismo , Carga Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA